PICMG

February 29, 2024

PICMG Announces Release of New InterEdge Standard for Open, Modular Process Control Systems

InteredgeNewsPICMG

Highlights:

  • Modular compute, switch, and I/O architecture enables interoperable standard for industrial PCs, PLCs, and distributed control systems.
  • Supports IEC 61499 and IEC 61131 for compatibility with a wide range of automation systems.
  • Hot-swappable modules can be replaced or upgraded while the system is running, minimizing downtime and maintenance costs.

 

FEBRUARY 2024 ­­– WAKEFIELD, MA. PICMG, the consortium for open hardware specifications, today announced the release of InterEdge, a modular architecture for process control systems (PCS). The IEC 61499 and IEC 61131-compatible InterEdge specification promises to revolutionize the industry with an interoperable, multi-vendor alternative to proprietary Industrial PCs (IPCs), Programmable Logic Controllers (PLCs), and Distributed Control Systems (DCSs).

“Business needs evolve at an ever-increasing rate,” said Francisco Garcia, Americas Regional Instrument Lead at ExxonMobil Technology & Engineering Company and member of the InterEdge technical working group. “InterEdge delivers an interchangeable base hardware standard for industrial manufacturers looking to adapt to changing business needs. As a result, providers can deploy and scale dedicated physical assets and focus on value-added software and services.”

A Shared Standard for the Process Industry

InterEdge defines a vendor-neutral, open standard for edge computing and I/O module hardware. It segments hardware into Compute Modules, Switch Modules, and I/O Modules. All of these modules are connected via a common backplane, enabling easy customization and expansion of industrial automation functions.

An overview of the specification and an architecture diagram are available at https://www.picmg.org/openstandards/interedge/. InterEdge 0 R1 supports both single- and multi-channel I/O implementations and a forthcoming specification will be optimized for single-channel I/O.

The full specification is available to purchase. Interested parties are encouraged to participate in ongoing specification development efforts by joining the PICMG InterEdge working group by emailing [email protected].

With its modular approach, InterEdge can flexibly incorporate the functions of disparate automation systems into a single platform. This common platform can be deployed across automation, chemical refining, oil and gas, pharmaceuticals, metals and mining, pulp and paper, food and beverage, and a wide range of other process industries.

Upgradability that Breaks Free from Hardware Lock-In
By replacing proprietary edge devices, InterEdge eliminates vendor lock-in, simplifies integration and maintenance, and enables online upgrades, all of which contribute to significant cost savings.

In the past, edge components remained in place for decades with static functional capabilities due to the difficulties of upgrades. In contrast, the hot-swappable interoperability of InterEdge allows industrial organizations to quickly adapt to changing market demands and technological advancements. Now manufacturers can improve their competitive position through emerging trends in AI, Industrial IoT, and Industry 4.0.

“InterEdge allows industrial manufacturers to transition from proprietary hardware to an open architecture where they can choose fit-for-purpose components, replace obsolete hardware, add computational resources, and upgrade hardware security in a running plant at virtually zero switching costs,” said Matt Burns, global director of technical marketing at Samtec and chair of the InterEdge Technical Working Group.

“InterEdge does for industrial control systems what the Open Compute Project did for data centers,” Burns added.

Strong Support from Industry Leaders
InterEdge originated as part of the O-PAS™ (Open Process Automation) Standard from The Open Group® Open Process Automation™ Forum (OPAF), a consortium of 110+ leaders in process automation including system suppliers, engineering firms, governmental bodies, research institutions, and end customers.

With its new home in PICMG, InterEdge joins a growing family of multi-vendor hardware standards with a decades-long track record of success. PICMG and OPAF have committed to working together to push for the same widespread adoption of InterEdge.

“PICMG felt it was critical to release this because it lays the groundwork for subsequent iterations of the InterEdge specification that will address the broadest range of industry use cases possible,” says Jessica Isquith, president of PICMG. “We are eager to support the continued progress of InterEdge and its ability to revolutionize industrial edge environments.”

Learn More

Details of the InterEdge specification are available on the PICMG website. Solutions from participating hardware vendors are expected to be available in the coming months.

For more information on InterEdge, visit:
· InterEdge Specification Overview: www.picmg.org/openstandards/interedge
· License the InterEdge Specification: www.picmg.org/product/interedge

February 29, 2024

Decades of Contribution, Immeasurable Impact

COM ExpressCOM-HPCJess IsquithKontronPICMG

This year PICMG celebrates thirty years of developing open computing specifications. And despite three decades of open hardware specs that are used by thousands of companies and countless engineers worldwide, the organization is still largely an unknown—even in our own industry.

But from behind the scenes, PICMG is responsible for billions of dollars of business. It has reduced time to market in virtually every electronics-driven industry. It has empowered companies to innovate by adopting off-the-shelf technologies, giving them space to focus on their core competencies. It has built markets based on coopetition, where companies collaboratively develop open, interoperable specifications then go toe-to-toe once they are ratified.

Even less recognized are the individuals who donate hundreds if not thousands of hours to the creation of PICMG specifications. These engineers are rarely acknowledged for their contributions. They are truly unsung heroes, and PICMG specifications wouldn’t exist without them.

One of these unsung heroes is Stefan Milnor, who recently retired from his role as VP of Engineering at Kontron. In parallel, he stepped down as the long-time editor of COM Express and COM-HPC specifications. 

Stefan has been involved in PICMG since the beginnings of COM Express, which is undeniably the most successful computer-on-module in a billion-dollar COMs market. As editor, Stefan incorporated input from numerous technical subcommittees over the years and implemented it into specifications that have been adopted by thousands of organizations building embedded systems. It’s a difficult job that requires a rare mix of technical acumen and attention to detail, and his skill and efficiency will be missed by us all—including some who never knew he was the hand behind their downloaded spec.

Stefan has always been a very private individual. In fact, by the time we could reach out to him for comment he had already left. In some ways, it’s a fitting conclusion for someone who performed yeoman’s work for decades without reward. And although he probably isn’t reading this, his contributions to PICMG and the embedded computing industry deserve to be acknowledged.

Thank you, Stefan, for helping make PICMG what it is today: 30 years strong and counting.

— Jessica Isquith, President, PICMG

Admin Note: Contact Doug Sandy, PICMG CTO, at [email protected] to learn how you can get involved in PICMG’s technical working groups. Contact me, [email protected] if you are interested in joining PICMG or have any questions about our organization.

February 29, 2024

Members Only Series: Jens Hagemayer of Bielefeld University and the COM-HPC plus CXL Opportunity

COM-HPCOpen StandardsPICMGSlider

The Members Only interview series highlights leaders from within PICMG and throughout the open standards development community. We recognize their contributions and seek insight into their thought processes and strategies driving open technology-powered industries forward.

This issue we introduce Jens Hagemayer, a research associate at the Bielefeld University. Jens and his team have been intimately involved in the development of COM-HPC since its inception, championing the use of heterogeneous modules designed around FPGAs. Now they are investigating ways that Compute Express Link (CXL) specifications can take COM-HPC into new use cases.

PICMG: Can you describe your work outside of PICMG as well as the role you played in development of the COM-HPC specification? 

JENS: I am currently engaged in research at Bielefeld University, focusing on the development of heterogeneous and reconfigurable computing technologies for a wide range of applications. These include the Internet of Things (IoT), edge computing, cloud computing, and high-performance computing (HPC).

My involvement with the early stages of the COM-HPC specification centered on leading the development of the Platform Management Interface Specification and expanding the Embedded EEPROM Specification for COM-HPC. 

PICMG: You recently raised awareness about the CXL standard within the COM-HPC community. What is CXL and why is it relevant for PICMG COM-HPC developers and users?

JENS: CXL, or Compute Express Link, is a high-speed, high-capacity interconnect standard that facilitates efficient communication between CPUs, memory, and peripherals using the PCIe physical layer. Its support for cache coherency, disaggregation, and scalable architectures makes it a compelling choice for modular form factors like COM-HPC, driving its popularity among developers and users seeking advanced computing solutions.

PICMG: Why is CXL 3.1 significant in the context of COM-HPC? What use cases or capabilities will it drive in the COM-HPC ecosystem?

JENS: CXL introduces features that cater to the demanding requirements of cloud and high-performance computing systems. Its emphasis on scalable architectures, disaggregation, and cache coherency is particularly relevant for COM-HPC, offering the potential to revolutionize the way modular computing platforms are designed and utilized. 

The integration of CXL into COM-HPC could facilitate the development of more sophisticated computing solutions, enabling the seamless coupling of specialized accelerators and the establishment of cache-coherent multi-socket systems. These advancements promise to unlock new possibilities for COM-HPC applications, ranging from data-intensive analytics to AI and machine learning workloads, driving innovation in modular computing technologies.

PICMG: Given that CXL targets PCIe, has it been compatible with COM-HPC to date?

JENS: The relationship between CXL and COM-HPC is fundamentally influenced by CXL’s reliance on the PCIe physical layer for connectivity. This means that while direct compatibility between previous versions of CXL and COM-HPC has not been explicitly defined, the architectural underpinnings allow for potential integration. 

The absence of CXL in the current COM-HPC specification, coupled with the lack of support in existing modules, suggests that the integration of CXL represents a forward-looking opportunity for enhancing COM-HPC. Such integration is anticipated to require minimal modifications to the specification, paving the way for future advancements in modular computing.

PICMG: What does the COM-HPC community need to know about the CXL market or technical requirements to capitalize on the opportunity?

JENS: To fully leverage the potential that CXL brings to the COM-HPC community, it is crucial to understand the intricacies of CXL’s market dynamics and technical specifications. This involves a deep dive into the architecture of CXL, including its device types—such as Type 1 for I/O devices, Type 2 for cache-coherent devices, and Type 3 for memory expander devices. Additionally, understanding the topology options that CXL supports, including switch-based topologies for larger, more complex systems, can empower developers to design COM-HPC solutions that are both innovative and future-proof. 

Staying abreast of the evolving CXL specifications and market trends will enable the COM-HPC community to identify new opportunities for integration and application, ensuring that COM-HPC modules remain at the forefront of technological advancement.

PICMG: What are you and Bielefeld University doing with respect to CXL today?

JENS: We are working on integrating CXL within the RISC-V ecosystem, a venture that holds promising implications for the future of computing architectures. Our work focuses on the development of innovative bridge technologies that facilitate communication between the RISC-V Coherent Hub Interface (CHI) and CXL, using FPGA-based modules, which we refer to as microservers. 

This endeavor is not just about bridging two technical standards; it’s about creating a foundation for next-generation computing platforms that can seamlessly integrate diverse processing and memory resources. By developing these bridges, we aim to enable more efficient, scalable, and flexible computing architectures that can cater to the demanding requirements of modern applications, ranging from AI and machine learning to big data analytics.

PICMG: Where can interested parties go to find more information on CXL?

JENS: The CXL Consortium website serves as the primary repository of knowledge. This platform not only provides access to the official CXL specifications and technical documents, but also offers insights into the latest developments, industry adoption stories, and educational resources.

More Information:
• Compute Express Link: https://computeexpresslink.org
•*PICMG COM-HPC Overview: https://www.picmg.org/openstandards/com-hpc
•*PICMG Platform Management Interface Specification: https://www.picmg.org/product/com-hpc-platform-management-interface-specification