June 29, 2022

The evolution never ends: PICMG announces new MicroTCA specifications

Industry NewsNewsPICMG

Wakefield, MA., USA / Nuremberg, Germany, June 23, 2022 – PICMG, a leading consortium for the development of open embedded computing specifications, announces that the MicroTCA Working Group is working on the next generation of the MTCA architecture specifications initially launched in 2006. Efforts target improvements for time sensitive and high bandwidth applications such as in high-energy physics. Current work includes accommodations for the next generation of CPUs and FPGAs that will natively support PCIe gen 5. Future applications in industry require this higher bandwidth i.e. for image processing, signal detection, data acquisition. As current CPU speeds are limited by 80 W per slot power limit the support of more power for faster CPUs is on the task list as well. Future applications will also require other kinds of high- and low-speed fabrics paired with more flexibility in system design. The science market segment for high frame rate Megapixel detectors of the actual photon experiments requires even higher throughput. Thus, all these demands are scheduled to become part of the new releases of these successful specifications. With all these improvements MicroTCA continues to be an pro-active specification with significant updates to support high-bandwidth backplane interconnects. Latest update of the specs happened as recently as 2020.

“I am more than happy that the MicroTCA Working Group is so pro-actively addressing the recent demands. The new spec will find its way into many different vertical markets due to the flexibility of MicroTCA!”, says Heiko Koerte, VP and Director Sales & Marketing of N.A.T., “Applications in industrial automation, medical, telecommunication and networking, aerospace and transportation will not only benefit form these new features but also from how easily MicroTCA can be adapted to the exact needs. More than 16.500 MCHs just from N.A.T and many more I/O and compute cards delivered to the field speak for themselves. The wide spread of MicroTCA definitely makes it both a technically and commercially attractive solution!”.

About MicroTCA

MicroTCA® is a modular, open standard for building high-performance, backplane-based switched fabric computer systems in a small form factor.

MicroTCA has become the de facto standard for precision timing and synchronization equipment at world-renowned particle accelerators CERN, DESY, ESS, XFEL, KEK, SLAC, and others. Its architecture and features are also consistent with the Modular Open Systems Approach (MOSA) being adopted as part of the U.S. Department of Defense (DoD) electronic media acquisition policy.

Originally designed for edge telecom and networking use cases, the core MTCA.0 base specification defines the mechanical and electrical characteristics of a MicroTCA backplane, card cage, power subsystem, cooling, and system management. Since being ratified in 2011, the MTCA Base specification has been revised to support 10GBASE-KR and 40GBASE-KR4 Ethernet fabrics and spawned four additional sub-specifications adapted for data acquisition, control, and telemetry in markets such as high-energy physics, avionics, defense, mobile infrastructure, and others.

  • MicroTCA.0 – The Base specification defines MicroTCA’s electrical, mechanical, thermal, and management characteristics, including support for implemented in MicroTCA.0 Revision 2.0 in 2020.
  • MicroTCA.1 – Adds ruggedization features and forced-air cooling.
  • MicroTCA.2 – Expands shock, vibration, and temperature operation, allowing for both air and conduction cooling.
  • MicroTCA.3 – Continues to increase compliance threshold for shock, vibration, and temperature and requires the use of conduction cooling.
  • MicroTCA.4 – Adds features for the scientific community such as Rear Transition Modules (RTMs), which improve RF filtering, pre- and post-processing, clock generation, etc.

Developed as a reduced-footprint alternative to the popular AdvancedTCA family of specifications, MicroTCA defines a backplane-based system for plug-in Advanced Mezzanine Cards (AdvancedMCs). AdvancedMCs are available in different sizes (Full-size, Mid-size, Compact) and can be sourced from multiple vendors to add compute, storage, I/O, and other functionality to a MicroTCA chassis without modification. As mentioned previously, the MTCA.4 sub-specification also adds support for RTMs that increase system expansion possibilities in scientific applications.


A single MicroTCA system contains up to 12 AdvancedMCs slots, and up to two MicroTCA Carrier Hubs (MCHs). MCHs provide intelligent platform management, power delivery, and facilitate switching over Ethernet, PCIe, and/or Serial RapidIO backplane interconnect fabrics.

To learn more about the PICMG MicroTCA family of specifications, download the Short Form Specification for free at https://www.picmg.org/wp-content/uploads/MicroTCA_Short_Form_Sept_2006.pdf. You can also purchase Revision 2.0 of the MicroTCA Base Specification for $750 from https://www.picmg.org/product/microtca-base-specification-r2-0.

The current committee is led by Kay Rehlich of DESY, Heiko Koerte of N.A.T. and Thomas Holzapfel from powerBridge.

Founded in 1994, PICMG is a not-for-profit 501(c) consortium of companies and organizations that collaboratively develop open standards for high performance industrial, Industrial IoT, military & aerospace, telecommunications, test & measurement, medical, and general-purpose embedded computing applications. There are over 130 member companies that specialize in a wide range of technical disciplines, including mechanical and thermal design, single board computer design, high-speed signaling design and analysis, networking expertise, backplane, and packaging design, power management, high availability software and comprehensive system management.

Key standards families developed by PICMG include COM Express, COM-HPC, ModBlox7, IoT.1, CompactPCI, AdvancedTCA, MicroTCA, AdvancedMC, CompactPCI Serial, COM Express, SHB Express, MicroSAM, and HPM (Hardware Platform Management). https://www.picmg.org

June 29, 2022

PICMG Announces Significant Progress of IoT.X Family of Sensor Data Modeling and Abstraction Specifications

Industry NewsNewsPICMG

Wakefield, MA., USA / Nuremberg, Germany, June 23, 2022 – The PCI Industrial Computer Manufacturer’s Group (PICMG), a leading consortium for the development of open embedded computing specifications, is excited to announce significant progress on its IoT.X family of specs. Highlighted by the IoT.1 firmware interface and data modeling specification and soon-to-be-ratified IoT.2 network architecture, ongoing efforts promise to abstract low-level device physics such that sensor node data becomes interoperable across all levels of smart factory deployments.

PICMG IoT.1 focuses primarily on a data abstraction layer that allows users to turn traditional sensors and effecters into plug-and-play smart sensors and effecters using free and open-source tools that require little-to-no programming expertise. For example, the PICMG IoT Configurator and IoT Builder tools are reference implementations for building and generating smart sensor firmware that can be read by any sensor or controller.

Both can be accessed from the PICMG Github repos

The separate but complementary IoT.2 network architecture specification defines the integration of these smart sensors and effecters, as well as their data, into larger Industry 4.0 systems of systems. Based on the Data Management Task Force’s (DMTF’s) Redfish API, the .2 spec outlines an abstraction layer and transactional model so that sensor and effecter endpoints can be monitored and managed in the context of job models similar to those available from major cloud service providers.

In other words, the data transparency afforded by the two specifications permits IT factory personnel to send specific, state-based jobs to a machine or clusters of machines in the pursuit of a desired outcome.

“IoT.1 provides low-level visibility of physical device parameters that can directly impact the quality and efficiency of your production line,” says Doug Sandy, CTO, PICMG. “IoT.2 provides an IT-like interface for managing both machines and jobs at a high level of abstraction.

“When used together, they support the analytics required for higher levels of productivity and throughput across a factory environment,” he adds.

To foster an environment of openness and collaboration, IoT.2 will not be exclusive of other existing IoT communications protocols and models and allows them to be converted to maintain compliance with the new spec.

For more detailed technical information on IoT.1, IoT.2, and how PICMG’s latest family of specifications is helping accelerate Industry 4.0 adoption, please visit PICMG’s website www.picmg.org/understanding-smart-sensors. More information on PICMG’s overall Industrial IoT activities can be found at www.picmg.org/industrial-iot-overview.

IoT.1 was developed in collaboration with the following PICMG members: Arroyo Technology, nVent, Triple Ring Technologies, Sandy Systems. The IoT.1 specification can be purchased and downloaded here: www.picmg.org/product/iiot_firmware.


Founded in 1994, PICMG (PCI Industrial Computer Manufacturers Group) is a nonprofit consortium of companies and organizations that collaboratively develop open standards for high performance telecommunications, military, industrial, and general-purpose embedded computing applications. There are over 140 member companies that specialize in a wide range of technical disciplines, including mechanical and thermal design, single board computer design, very high-speed signaling design and analysis, networking expertise, backplane and packaging design, power management, High Availability software, and comprehensive system management. Key standards families developed by PICMG include CompactPCI CompactPCI®, AdvancedTCA®, MicroTCA®, AdvancedMC®, CompactPCI® SerialCOM Express®, SHB Express®, MicroSAM, COM-HPC. and HPM (Hardware Platform Management).

March 2, 2022

PICMG Committee to Develop New Modular Box PC Open Specification

Industry NewsNewsPICMG

ModBlox7 introduces an open standard to proprietary multi-billion USD market

PICMG, a leading consortium for developing open embedded computing specifications, announces a technical subcommittee formed to create a new PICMG form factor specification named ModBlox7. This specification will transform the multi-billion dollar Box PC industry by introducing an open standard to what is currently a proprietary market. Box PCs are highly integrated computing solutions, but the lack of interoperability limits the ability for end users to achieve truly cost-effective and sustainable solutions.

The ModBlox7 specification will describe a compact and modular Box PC that is flexibly configurable and can be wall-mounted, snapped onto a DIN rail, or integrated into a 19” subrack. The height and depth are fixed; the width is variable in multiples of 7HP. The maximum length is 84HP. The modular Box PC designs will be very robust, support passive conductive cooling, and be used for demanding applications such as railway, avionics, mobile machines and autonomous mobility as well as machinery in discrete manufacturing and controls in critical process industry infrastructures. The result of the committee’s work will be a basic specification describing the housing mechanics, the modular functional units, and the electrical interconnection of the units. The standard will guarantee interoperability of units for manufacturers as well as interoperability for users of the Box PC, while combining the advantages of modular systems and highly integrated cost-sensitive Box PC solutions.

The open specification will contain the following requirements or specified functions:

  • Cost-efficient design with minimum mechanical effort. No additional backplane or heat sink will be required. Coplanar board-to-board connectors couple each unit to its neighbor and route defined I/O interfaces (PCIe and USB) to the next board. 
  • Modular, functionally encapsulated plug-in units in multiples of 7HP width pitch. Units form functional assemblies such as power supply, CPU, switch and I/O. Units can be multiples of 7HP, e.g., implement more interfaces or functionality in a single building block assembly.
  • This results in a wide range of device combinations in a modular design in increments of 7HP (21HP, 28HP, 42HP to 84HP), making it cost-efficient even in small quantities.
  • Each modular computing unit can host a stack of 1, 2, or 3 PCBs – depending on the complexity. Separation is typically made according to the front I/O and the power and communication requirements between the host unit and its expansion units.
  • Flexible mounting with minimal accessory components for wall, din-rail, and 19″ subrack installations.

“For industrial end users, the advantages of an Box PC open standard lie in the cost-effective design of the dedicated systems and the flexible interchangeability of components to tailor the platform for dedicated tasks. Manufacturers also benefit, as the interoperability between the units strengthens their core competence, and they do not have to develop each unit and its embedded components such as cables and mechanics themselves. For VARs and system integrators, the new ecosystem will provide faster configuration options with components from multiple vendors,” states Mathias Beer, chief product officer at Ci4Rail.

According to Markets and Markets, the global industrial PC market size is estimated to reach USD 6.1 billion by 2026 from USD 4.6 billion in 2021, growing at a CAGR of 5.8%. The market growth is fueled by increasing demand for industrial IoT, a steady shift towards digitalized manufacturing from traditional manufacturing, growing awareness for resource optimization in manufacturing industries, and stringent regulatory compliances.

The goal is to have the specification ratified by the end of 2022. The team has elected Bernd Kleeberg of EKF Elektronik as chairman of the committee. Manfred Schmitz of Ci4Rail is the technical editor, and Johann Klamer of ELTEC Elektronik acts as secretary.

This initiative has over 15 active member companies, including: ADLINK, Ci4Rail, EKF Elektronik, Elma Electronic, ELTEC Elektronik, Embeck, ept, General Micro Systems, HEITEC, Hirose Electric, Intel, Kontron, nVent, Schroff, Samtec, Sealevel Systems and TEWS TECHNOLOGIES. Further vendors are invited to join the committee to actively develop the new modular Box PC open standard.

For more information, visit the PICMG website: https://www.picmg.org/modblox7/