Monthly Archives: February 2018

Overview of IIoT Initiatives

Doug Sandy |

At PICMG, we have kicked off a new focus on the requirements for Industrial IoT (IIoT). From there, our efforts can expand out to other IoT market requirements. In IIoT, hardware and software interoperability tends to be more important than household/consumer applications as sensors, actuators, and controllers from multiple vendors must work together seamlessly. But, standardization has not yet materialized.

IIoT, is different than traditional industrial automation in the fact that it combines ubiquitous sensing, advanced analytics, and IT technology. Going beyond traditional automation control functions, IIoT includes sensors and actuators for facility operations, machine health, ambient conditions, quality, and a variety of other functions. Advanced analytics enables the IIoT system to realize higher levels of operational efficiency by extracting meaning from the potential data available from a vast array of deployed sensors. Similar to cloud data centers, where sensors data is used to optimize virtually every aspect of operational efficiency, smart factories and other IIoT applications utilize analytics to improve up-time, optimize asset utilization, and reduce overhead costs. Migration to IT technology enables the IIoT operator(s) to deploy, monitor, and optimize their IIoT application. Standardization around IT practices helps to eliminate islands of proprietary equipment within the installation and provide tighter integration between the control domain and the operations domain. Adoption of IT methodologies enables IIoT companies to leverage the large existing base of IT hardware and software solutions when appropriate. Each of these benefits offers significant potential for capital and operational savings.

Standardization of the upstream interfaces for controller devices and meta-data models for sensors can help solve hardware and software interoperability and ease-of-use issues. Standardized interfaces would allow dissimilar pieces of hardware to communicate with the IIoT command center in a uniform fashion and eliminate isolated islands within the installment. Likewise, an extensible standardized meta-data model for sensors would allow for systematic detection and control of sensors and control points without extensive code re-writes. From a hardware standpoint, the IIoT marketplace would also benefit from greater standardization around communications interfaces, power, and environmental requirements.

Large industrial automation suppliers are not incentivized to embark on open standardization because it loosens the customer’s dependence upon their proprietary solutions. Smaller automation suppliers lack the industry clout or size to take on such an ambitious undertaking. This is a task best suited for an industry standards organization, and one which PICMG is well equipped to handle.

COM Express is one logical starting point to build upon because it has the small form factor, processing performance, and flexible I/O configuration to make it a natural fit for small gateways and control functions in small to medium installations, with distributed controllers for larger deployments. In larger installations, CompactPCI Serial or MicroTCA have been adapted for railway control and other rugged applications and may also serve as a flexible gateway/controller.

Click on the full IIoT Overview Discussion for more details.