Blog

January 27, 2022

PICMG Releases brand new COM-HPC® Carrier Board Design Guide

Industry NewsJess IsquithNews

The design guide supplements the COM-HPC specification for high performance compute modules 

Wakefield, MA., 2022 – PICMG, a leading consortium for developing open embedded computing specifications, announces that the COM-HPC® Carrier Board Design Guide is released and freely available on the PICMG website. The 160-page document provides electronics engineers and PCB layout engineers comprehensive information for designing custom system carrier boards for COM-HPC modules. COM-HPC – short for computer-on-module (COM) – high performance computing (HPC) – is a brand new open Computer-on-Module form factor standard that targets extremely high I/O and computer performance levels from high end clients up to the entry server class and even beyond. Standard COM-HPC modules plug into a carrier or baseboard that is typically customized to the application. OEM benefits are fast and cost effective layout with high design security for application specific embedded and edge computing boards on the basis of open standards.

Especially helpful is the detailed discussion of the challenging module to carrier board Ethernet KR and KR4 backplane signaling. To save pins on COM-HPC modules, the sideband signals for the 10G / 25G / 40G / 100G Ethernet KR interfaces are serialized and must then be deserialized on the carrier board. The design guide provides instructions for this in a series of diagrams.

Additionally, the guide provides enhanced schematics and block diagrams for all provided interfaces such as Serial ATA, PCI Express up to Gen 5, USB4, Boot SPI, eSPI, eDP, MIPI-CSI, SoundWire, asynchronous serial port interfaces, I2C/I3C, GPIO, System Management Bus (SMBus), thermal protection and module type detection. PCB design rule summaries further enable engineers to efficiently design fully signal compliant COM-HPC carrier boards. Also, a section has been added to discuss mechanical considerations including heat spreader/module attachment, alternative board stack assemblies and board stiffeners for carrier boards. Information about all COM-HPC interfaces and a list of useful books to facilitate carrier board designs complete PICMG’s COM-HPC Carrier Board Design Guide.

Electronic design engineers and printed circuit board developers shall note that while the design guide contains additional detailed information it does not replace the PICMG COM-HPC specification. For complete guidelines on the design of COM-HPC compliant carrier boards and systems, it is necessary to refer to the full specification – the design guide is not intended to be the only source for any design decisions. Besides consulting the latest COM-HPC specification, it is also strongly recommended to use the module vendors’ product manuals as a reference. The design guide and base specification are accompanied by a Platform Management Interface Specification, and the COM‑HPC EEEP. The existing Embedded API (eAPI) specification also applies to COM-HPC.

The COM-HPC specification and the COM-HPC Carrier Board Design Guide are available for download on the PICMG website at picmg.org/openstandards/com-hpc/. A preview document is also available, as well as additional resources to learn more about the specification.

Christian Eder, chairman of the COM-HPC committee, said, “This comprehensive document will further accelerate the fast start of the COM-HPC standard. While the specification documents in themselves are already of great use for developers, the detailed Carrier Board Design Guide helps to avoid design problems, especially when handling high-speed signals, such as PCIe Gen 5 and USB4. I expect to see further time-to-market improvements for COM-HPC-based solutions.”

PICMG thanks all members of the PICMG COM-HPC committee who have worked on these documents. Special thanks go to Christian Eder, Stefan Milnor and Dylan Lang. Christian Eder, marketing director at congatec, acted as the chairman of the COM-HPC committee. He was previously a draft editor of the current COM Express standard. Stefan Milnor from Kontron and Dylan Lang from Samtec supported Christian Eder in their respective functions as editor and secretary of the PICMG COM-HPC committee.

October 6, 2021

PICMG Ratifies IoT.1 Firmware Specification for Smart IoT connected Sensors and Effecters

Industry NewsNewsPICMG

PICMG, a leading consortium for the development of open embedded computing specifications, announces the ratification of IoT.1 specification defining a communication standard between sensors / effecters and local IoT controllers such as micro Sensor Adapter Modules (microSAM) already specified by PICMGs IoT.0 specification.

The IoT.1 specification defines a firmware interface and low-level data model that provides for vendor-independent configuration of smart sensors and effecters, as well as plug and play interoperability with higher levels of the installation. IIoT.1 supports both sensing and profiled motion control required by most emerging Industry 4.0 applications.

The IoT.1 specification is the first work product from PICMG based on collaboration with the DMTF organization. PICMG’s IoT.1 specification leverages and extends the Platform Level Data Model (PLDM) specification from Distributed Management Task Force (DMTF) in order to address the needs of industrial automation and control. PLDM is a low level messaging system that supports topologies, eventing and discovery and runs over a variety of system level buses such as I2C/SMBus and PCIeVDM (Vendor-Defined Message) over MCTP (Management Component Transport Protocol) as well as RBT (RMII-Based Transport (RMII = Reduced Media Independent Interface)) over NC-SI (Network Controller Sideband Interface).

IoT.1 was developed in order to benefit the industry in four specific ways:

  1. To enable sensor vendors to create smart sensors without having to manufacture the control circuitry and/or software by purchasing these components from PICMG-compliant suppliers
  2. To enable controller suppliers who wish to create smart sensors or smart-sensor components to do so in a way that is interoperable with other suppliers
  3. To enable sensor/effecter integrators to integrate sensors/effecters from multiple vendors with controllers from multiple vendors
  4. To accelerate the uptake of smart-sensor technology through open-specifications and interoperability

When combined with the PICMG sensor-domain network architecture and data model, sensors connected to MicroSAMs (PICMG IoT.0) or other controller modules will seamlessly integrate into the network with plug-and-play interoperability.

“Nothing like this has ever been done before in Industrial IoT – PICMG IoT.1 brings true multi-vendor plug and play interoperability to the sensor/effecter domain with flexible, open-standards based solutions,” said Doug Sandy, CTO of PICMG.

Jessica Isquith, president of PICMG, adds “this specification has the potential to accelerate the shift to better sensor interoperability and encourage a better and wider range of options.”

IoT.1 was developed in collaboration with the following PICMG members: Arroyo Technology, nVent, Triple Ring Technologies, Sandy Systems, PICMG

For more information, please visit PICMG’s website https://www.picmg.org/industrial-iot-overview/. The specification can be purchased and downloaded here: https://www.picmg.org/product/iiot_firmware.

September 10, 2021

New framework of platform management features for COM-HPC based edge computing designs

COM-HPCIndustry NewsNews

PICMG releases Platform Management Interface specification for COM-HPC

Wakefield, MA., USA / August, 2021 – PICMG, a leading consortium for developing open embedded computing specifications, announces the release of the COM-HPC Platform Management Interface (PMI) specification. It provides a framework of remote and out-of-band platform management features for COM-HPC Computer-on-Module based edge computing designs and is freely available on the PICMG website. COM-HPC is an open Computer-On-Module (COM) form factor standard for High-Performance Computing (HPC) that combines high-end I/O bandwidth with edge computing performance levels. Standard COM-HPC modules plug into an application-specific carrier board (aka baseboard) and offer OEMs an application-ready computing core to accelerate design cycles, reduce NRE costs and increase ROI as well as sustainability by extending longevity options beyond a certain processor family or module vendor.

 “The dedicated modular system management interface, which gives remote management access to embedded systems – even out-of-band – is another industry first introduced by COM-HPC,” explains Christian Eder of congatec, the chairman of the COM-HPC committee. “Thanks to this feature, OEMs and users will be able to ensure highest levels of reliability, availability, maintainability, and safety (RAMS) for their worldwide deployments of distributed network infrastructure equipment and edge/fog computing servers as well as IIoT gateways and clients. For individual needs, these COM functions can be expanded via an optional board management controller on the carrier board. This provides OEMs with a modular framework of uniform remote management functions that can be flexibly scaled to specific requirements.”

 The COM-HPC PMI specification is a supplement to the COM-HPC open standard and serves as a guide on how to achieve interoperability between COM-HPC modules from different vendors and combinations of carrier boards. It adapts the Intelligent Platform Management Interface (IPMI) specifications to COM-HPC designs and also touches the implementation of Redfish features.

 IPMI is a collection of side-band/out-of-band management commands that are used for system interaction. IPMI firmware generally runs on a board management controller, a discrete integrated circuit that is accessed via a network connection and/or serial interface, and/or LPC/eSPI. Redfish, a standard managed by DMTF, provides a Representational State Transfer (RESTful) interface for the management of systems. Redfish is still under active development, and it continues to evolve as new use cases are discovered.

 The COM-HPC PMI document describes three different PMI maturity levels for modules and two for carrier boards. The modules’ PMI maturity levels range from unmanaged module (M.U) and basic managed modules (M.B) to fully managed modules (M.F); and carrier board levels range from unmanaged (C.U) to managed carrier boards (C.M). The goal of specifying these different levels is to allow interoperability between multiple modules and carrier board designs. The different module management capabilities are broken down by their adherence to a set of IPMI commands listed below.

 The modular COM-HPC Platform Management Interface specification is available for download on the PICMG website at https://www.picmg.org/openstandards/com-hpc/